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Abstract. Classical ferromagnetic spin systems on self-similar fractal lattices are studied. 
By a variation of Simon's argument, it is shown rigorously that the critical decay exponent 
A (which is characterised by (qXq,)s dist(x, y ) - A  at the critical point) satisfies the bound 
A <  Q, where Q is the connectivity. 

We also discuss some general features of the phase transitions and critical phenomena. 

1. Introduction 

Fractals [l], as a new universality class of geometric objects in nature, have been 
attracting considerable interest. In particular, non-random fractals, constructed via 
simple recursion relations, are useful as textbook examples for the study of physics in 
an environment which lacks translation invariance but possesses self-similarity. Such 
a situation, common in various random systems, might also take place in the structure 
of spacetime itself if we go beyond the Planck length scale. 

In fact, spin systems, field theories, quantum mechanics, diffusion processes, electric 
networks and many other interesting physical systems on fractals have been studied 
(see [2-61 and references therein). There, one of the main interests is to single out 
and calculate a certain simple quantity (dimension) governing the universal behaviour 
of the relevant system. 

In the present paper, we concentrate on the classical ferromagnetic spin systems 
(or, equivalently, the scalar field theories with uv cutoff) defined on fractal lattices. 
(We call them 'fractal spin systems'.) 

First we discuss some of the general features of phase transitions and critica: 
phenomena in fractal spin systems. Then we study decay properties of the system at 
the critical point and prove a rigorous inequality for the exponent of the power-like 
decay. It can be regarded as a fractal version of the Simon inequality [8]. In the 
derivation of this inequality, we are naturally led to the notion of the connectivity, 
which is very similar to that in [3]. 

We would like to stress that such an inequality plays a crucial role in determining 
the long-range scaling behaviour of spin systems near the critical point and the basic 
scaling properties of the (possible) continuum-limit field theories. We also note that 
this is among the few rigorous and concrete results obtained for physical systems in 
general fractals, including the infinitely ramified ones. 

In 9 2, we define spin systems on fractal lattices, establish their high-temperature 
behaviour, discuss basic features of their phase transitions and briefly describe our 
main inequality. Section 3 is devoted to the detailed description and proof of our 
inequality. 

'f Present address: Department of Physics, Princeton University, PO Box 708, Princeton, NJ 08544, USA. 
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2. Phase transitions and critical phenomena in fractal spin systems 

2.1. Definitions 

Let A, be a set consisting of a countably infinite number of sires, x, y ,  . . . E As.  We 
associate with A, a set of bonds Ab which consists of unordered pairs of sites (x, x'), 
( y ,  y ' ) ,  . . . E Ab.  To each site x, the number of the bonds in A b  including x is uniformly 
bounded by a constant z. We assume that A = (A, ,  Ab) defines a connected non-random 
fractal lattice which is self-similar in the large length scale. The examples are almost 
all of the known fractal lattices, including p-dimensional Sierpinski gaskets and carpets, 
constructed of bonds of unit length [l-61 (figure 1). Our precise assumptions will be 
described in 0 3 (see Fl-F7). 

l a )  I b )  

Figure 1. ( a )  Sierpinski gasket. d,,,, = In 3/ln 2 = 1.585, Q = 0 and d,,,, = 2 In 3/ln 5 = 
1.365. ( b )  Sierpinski carpet. d,,,, = In 8/ln 3 = 1.893, Q = In 2/ln 3 - 0.631 and D,,,, is 
conjectured [6] to lie between 1.72 and 1.86. 

Spin systems (or field theories) on A are defined in the usual manner by associating 
spin variables cpx E R ( N  = 1 or 2) to each site x E A,,  and a pairwise ferromagnetic 
inferaction to each bond (x, y )  E Ab. Our Hamiltonian X and the corresponding thermal 
expectation are? 

N 

(. . .) = 2-' fl dv(cp,)(. . .) e-'% p > 0, (1) = 1 (2.1) 

where the single-spin distribution dv( cp) is assumed (from technical considerations) 
to be in the Brydges-Frohlich-Spencer class [9], i.e. measures written as dv(cp)= 
exp(- V(cp2)) dcp with V (  t )  3 0 for t E [0 ,  a), and their well defined limits. In par- 
ticular, the class contains the king model, the classical X Y  model and one- and 
two-component lattice cp4 field theories$. 

J X C A ,  

T More precisely, we define (. . .) as an infinite volume limit of a sequence of finite volume expectations. 
'$ In the following, we describe our results for the single-component spin systems. n e  extensions to the 
two-component ones are straightforward. 
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2.2. High-temperature region 

First, we consider the high-temperature region where /3 is sufficiently small. Let us 
introduce the graph-theoretic distance dist(x, y )  which is defined as the minimum 
number of bonds in Ab that one needs to connect two sites x and y in A s .  Then we 
can easily state the following. 

Theorem 1. The two-point function of the system satisfies the following bound for all 
x, y E A, and p < P o :  

where Po= l / cz  with c =]dv((o)cp2/jdv(cp). Therefore it exhibits exponential decay. 

Proof: By a standard high-temperature expansion type argument [lo, 113, one can 
bound the correlation function in terms of the free random walks on the fractal lattice. 
Equation (2.2) then follows by an elementary estimate of the number of random walks. 

Remark. The above theorem applies to a more general class of spin systems (see 

((o,(py) G constant x exp( -In(Po/P) dist(x, y ) )  (2.2) 

[lo,  111). 

Note that dist(x, y )  is one of the natural notions of distance we can equip to the fractal 
lattice A.  The above theorem shows that the present one is a suitable distance for spin 
systems (at least) in the high-temperature region. 

2.3. Phase transitions 

It is believed (and partially proven rigorously) that a ferromagnetic spin system in the 
ordinary hypercubic lattice undergoes a phase transition if the dimension d satisfies 
d 7 1 (spin system with discrete symmetry) or d > 2 (spin system with continuous 
symmetry). In particular, it exhibits the long-range order 

as dist(x, y )  + CO (2.3) 
for sufficiently large values of p. 

As is (heuristically) discussed in [ l l] ,  our fractal spin system is also expected to 
exhibit the long-range order (2.3), for large values of p, if and only if 

(i) Q>O (for spin systems with discrete symmetry, such as Ising [3] and one- 
component (p4 models), and 

(ii) d,,,, > 2 (for spin systems with continuous symmetry, such as X U ,  Heisenberg 
and N-component ( N  2 2 )  p4 models), respectively. Here Q is the connectivity defined 
below (see (2.6)) and dspEC is the spectral dimension [2 ,6 ,7] .  It should be noted that 
both Q and d,,,, are geometric quantities, which are defined independently of the 
specific spin systems on the lattice. 

( (px'pJ) -$ constant > 0 

Moreover it is-also conjectured [ 111 that, in any ferromagnetic spin system, 
(ii i)  dspEC > 4 implies that the critical phenomena coincide with the mean-field 

predictions. (More precisely, we expect the critical exponent equalities y = 1, (Y = 0, 

In the ordinary d-dimensional hypercubic lattice, both Q+ 1 and dspEC coincide 
with the Euclidean dimension d. Then (i)-(iii) become nothing other than the familiar 
statements on the critical dimensionalities. 

Our assertions (i)-(iii) are derived by carefully studying several rigorous and 
heuristic arguments concerning phase transitions and critical phenomena. Roughly 
speaking, one may replace the Euclidean dimension d by 

A - 1  
4 - 2 9 . . .  .) 
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(a) the quantity ( Q +  1) in a statement which relies on the domain wall type 

(b) the spectral dimension dSPEC in a statement which is derived by spin-wave 
argument, and 

analysis. 

2.4. Violation of scaling 

Consider a ferromagnetic spin system in the ordinary d-dimensional hypercubic lattice, 
which undergoes the phase transition. Then it is believed (and partially proven) that, 
at the critical point P c ,  the two-point function exhibits the following power-law decay 
property 

at P = P c .  
Here the decay exponent A is often written as d -2+ 77. 

In [ll],  we have shown that, in a fractal spin system, we cannot generally expect 
such a simple power-law decay. There may be more than one decay mode, characterised 
by distinct values of the decay exponent. Thus all that we can expect for a fractal 
spin system at the critical point is 

dist(x, y ) F A ' S  (cpxpy)S dist(x, y)-" at P = P c  (2.4) 

Consequently, we suspect that some of the familiar scaling relations, such as 

(cp,cp,) - dist(x, Y)-" 

where A s A'. (We have an explicit example [ 113 where A # A'.) 

Fisher's, are violated in fractal spin systems. 

2.5. Rigorous bound for decay exponent 

Our mi?in exponent inequality is concerned with the critical decay exponent A, which 
is roughly defined by the right-hand side of (2.4). More precisely, A is defined as the 
supremum value of 6 which satisfies the following inequality for all x, y with a finite 
constant: 

(cp,cp,) s constant x dist(x, y ) -&  at P = p c .  (2.5) 
Note that A stands for the most slowly decaying mode of the two-point function (cpxpy). 

To describe our main result, let us introduce a notion of the connectivity [3]. (A  
rigorous definition appears in $3.)  Consider a region in A satisfying dist(xo, x)  s r 
for some fixed origin xo. Let N ( r )  be the minimum number of bonds which we must 
remove from the lattice to isolate the above bounded region from infinity. We assume 
that N ( r )  has the following asymptotic behaviour for large values of r: 

N (  r)  - rQ (2.6) 
where Q is a constant which is called the connectivity?. 

In the regular lattice, Q +  1 coincides with the Euclidean dimension. It is quite 
important to note that this quantity Q+ 1 generally does not coincide with the fractal 
dimension d,,,, . Finitely ramified fractal lattices (one-dimensional chain, Koch curve, 
Sierpinski gasket, etc) have various (and arbitrarily large) values of dFRAC, but they 
all have Q = 0. For the Sierpinski carpet, we have d,,,, = In 8/ln 3 = 1.893, while 
Q=ln2/ ln3-0.631.  

Then, from theorem 3 (proved in the next section), we find the following. 

t Our definition of Q is slightly different from that in [3]. Our Q does not depend on the embedding of 
the lattice, while the original Q does. However, two definitions usually coincide if we take a 'natural' 
embedding. 
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Corollary 2. In an  arbitrary ferromagnetic fractal spin system in the Brydges-Frohlich- 
Spencer class, the critical decay exponent A and the connectivity Q satisfy the inequality 

A S  Q. (2.7) 

The above inequality is proven by showing that the inequality (2.5) with 6 > Q inevitably 
implies the exponential decay of the correlation function (theorem 3). In the regular 
lattice, (2.7) reduces to a critical exponent inequality 7 G 1 which is known as the 
Simon inequality [8]. 

Our proof, which is a variation of Simon’s proof, is unfortunately not its straightfor- 
ward extension. Simon’s original method makes use of the translational invariance of 
the regular lattice, which is drastically violated in fractals. Instead, we develop a sort 
of rigorous renormalisation group argument which makes use of the fact that a non-trivial 
fractal has a lot of large holes (‘tremas’ in the terminology of [ l ] )  which are located 
in a self-similar manner. Therefore our proof does not apply to regular lattices. 

2.6. Discussion 

We have presented some rigorous and heuristic results clarifying the important roles 
of the connectivity Q and the spectral dimension d,,,, in fractal spin systems. It is 
clear that the behaviour of fractal spin systems is not as simple as those of ordinary 
spin systems on hypercubic lattices. We have to know at least two kinds of dimensions 
to determine some of the basic features of the phase transitions and critical phenomena. 

It should be stressed, however, that our results do  not imply that the other notions 
of dimension [ l ,  4 ,5]  are less essential. For example, the fractal (or Hausdorff) 
dimension d,,,, plays an  important role if one considers scale change in the lattice 
and  investigates the scaling limit of a fractal spin system [6]. (Such an  investigation 
is crucial if we consider the field. theories on fractal-like spacetime.) 

3. Random walks generated by the Simon-Lieb inequality 

In this section, which is the technical heart of the present paper, we describe our 
assumptions and  statements explicitly, and  prove the inequality ( 2 . 7 )  by employing a 
novel use of the Simon-Lieb inequality. 

First, let us assume that our fractal lattice satisfies the following properties Fl-F7 
for all N = 1, 2 , .  . . with positive constants a, z,, z 2 ,  c ,  - c4, and Q( 2 0 )  which are 
independent of N. 

F1. A, is decomposed into a disjoint sum of finite sublattices (not always identical) 
as A s = U , B ! ”  where each B:” is called a block. 

F2. Each block BIN’ has a linear size of order a &, i.e. 

C, a s max dist(x, y )  s C2a h. 
x, \ E fl: ’ I  

Definition. The above decomposition of A, determines a set of broken bonds Ab”’ = 
{(x, y )  E Ablx E B:”, y E B-i”, i # j } .  
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F3. AiN’  is again decomposed into a disjoint sum as ~ ~ ” ’ = U k C L N ’  where each 

F4. The number of bonds in a cut is uniformly bounded by C,aNQ. 
F5. Different cuts in a block BIN’ are separated at least by a distance of order a N ,  

CLN’ is called a cut. 

i.e. 

C,u” s min{dist(x, y ) l x ~  (x, x‘) E CL”’, y E (y ,  y’) E Cl”, k # I } .  

Dejinition. We say that a block BIN’ and a cut CL”’ are neighbouring, if there is a site 
in BIN’ which belongs to a bond in CL”. 

F6. To each block BIN’, the number zi?’ of neighbouring cuts satisfies 

F7. To each cut CL”, the number ~ $ 7 )  of neighbouring blocks satisfies 

The explicit decompositions into blocks and cuts in simple (but basic) examples 
can be found in figure 2. In general, the decomposition in the Nth stage is carried 
out by making ‘cuts’ through the holes whose linear sizes are of order a N .  (Note that 
such holes are separated by distances of order a”.) It is clear that such a decomposition 
is impossible in the regular lattice. 

Note that the property F4 with F6 implies the relation (2.6) where u N  is replaced 
by r. 

2G Z y y S  2 , .  

2 s z$?) s 2 2 .  

Figure2. Decomposition of ( a )  the Sierpinski gasket and ( 6 )  the Sierpinski carpet. 
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Now, to state our main theorem, let us describe in some detail the marginal 
conditions on the power decay of the two-point functions. Any one of the following 
three conditions will turn out to imply non-critical exponential decay. (A reader may 
just take a look at D2 and D3, and then skip to theorem 3.) 

For a cut C(kN) (in F3), we consider a finite sublattice A(C',"') which is obtained 
by gluing together the blocks (in F1) neighbouring to the cut CL". By (. . . ) L N ' ,  we 
denote thermal expectation (2.1) defined on this sublattice. 

Then the optimal condition for the marginal decay is as follows. 
D1. Let Cj" and C',"' ( I  # k, m # k, 1 # m) be the cuts neighbouring the sublattice 

A( CL"). Then 

Y E  i % y ' )  E C '," J 

converges to zero as N + CO. 

Instead of this rather technical condition, one can use the following two crude (but 
intuitive) conditions. By applying the assumption F5 and the Griffiths I1 inequality 
(cpcp)'"'s(cpcp), we see that the following (D2) always implies the above D1. 

D2. dist(x, y)'(cpXcpY)+ 0 holds uniformly in x, y as dist(x, y )  +CO. 

If we restrict ourselves to the finitely ramified fractals (dRAM = l ) ,  the following D3 

D3 (only for finitely ramified fractals). (cp,cp,) --* 0 holds as dist(x,, x )  + CO, where 

The merit of D3, compared with D2, is that it does not contain any assumptions 

Now we can state our main theorem. 

also implies D1. 

the origin x,, is the fixed point of the scale transformation [6]. 

about the uniformity. 

Theorem 3. Consider a ferromagnetic spin system (2.1) in the Brydges-Frohlich- 
Spencer class on a fractal lattice A satisfying Fl-F7. If the two-point function of the 
system satisfies the condition D1 (or D2, D3), there exist finite constants c, 6, and 

(3.1) 

Before proving the theorem, we describe how to derive corollary 2 from theorem 3. 

0 s  (cp,cp.J s c exp(-dist(x, y ) / 5 )  

holds for any x, y E As.  Hence the spin system is not at its critical temperature. 

ProofofcoroZIary 2. Assume that the system is at its critical point ( 6  = CO),  and satisfying 
the bound (2.5) with some S > Q. Then (2.5) implies the condition D2 and we have 
a finite 6, which contradicts the assumption. Thus we obtain the desired inequality (2.7). 

If dRAM = 1, the existence of any decay (condition D3) implies an exponential decay. 
This reflects the absence of phase transition in the spin systems. 

Proof of theorem 3. Recall that, for our spin systems, the following Simon-Lieb 
inequality is known to hold [8,9]: 

where V is a bounded region, X E  V, y E  V, and (. . .)" is the thermal expectation (2.1) 
defined on V. 
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Consider the decompositions into blocks and cuts in Fl-F7, for a fixed value of 
N. Let x belong to a cut C:”, and a sufficiently separated site y belong to another 
cut Ci”. Applying (3.2) to (cp,cp,) by setting V=A(C‘,”), we have 

(cpxcpy) s P c c (cpxcpu):”(cpucpY) 
m ( U , ~ ) E C ( , ~ ’  

S C p Y “ )  max,,, (cpucp,) (3.3) 
m (U.U)E c‘ m 

where the first sum counts those cuts C‘,“’ neighbouring A(CLN)) .  We have used F4 
and the definition of the weight factor Y c N )  follows that of D1. 

It is convenient to interpret each term on the right-hand side of (3.3) as describing 
a ‘hop’ from a cut C(kN) to another C‘,“’ which passes through a block neighbouring 
both cuts. Then it is easy to see that successive applications of the Simon-Lieb 
inequality (3.2) to (3.3) generate ‘random walks’ which wander from cut to cut around 
A, until they hit the cut Cj” containing the site y 

(cpxcp,,)s C ( p Y ‘ N ’ ) n ( W ) .  (3.4) 
W:C\”)+C\” 

Here W = (CL:), CL:), . . . , CL:;,) where k, = k, kn(w) = l, n (  W )  denotes the number 
of cuts contained in W, and C”)  and C‘,y+), are neighbours to a common block Illp” 
(figure 3). In (3.4), the summation runs over all possible walks satisfying the above 
conditions. 

kp. 

Figure3. A random walk generated by the Simon-Lieb inequality. A hop from one cut 
to another is across a block. 

Since the number of the possible walks with n cuts is bounded by ( z1z2 )”  from F6 
and F7, and since n must be larger than dist(x,y)/c,aN from F5, we obtain the 
following upper bound: 

(cpxcpy)s (1 - Z 1 Z 2 P Y ( N ) ) - - 1 { ( Z l Z 2 P Y ( ~ ) ) ~ ’ ~ ~ a N } d i s t ( x , y )  (3.5) 

provided that z , z ,~Y‘”  is strictly smaller than 1. Since we have (3.4) and D1, the 
condition can be satisfied by taking sufficiently large N. Then (3.5) implies the desired 
exponentially decaying upper bound (3.1). 
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